Project information

  • Problem: Fraud Detection
  • ML Areas: Anomaly Detection
  • Learning technique: Supervised Learning - Semi-Supervised Learning
  • Tools: Python, Pytorch, Jupyter Notebook
  • Project date: May 2020
  • Project URL: Fraud Detection project

Description

Goal: Detect frauds, given transitions data from kaggle dataset

Technical Solutions:

  • Autoencoder - Semi-supervised Learning
  • Random Forest - Supervised Learning

Evaluation: AUC

Results:

  • Autoencoder: 0.79
  • Random Forest: 0.88